长春应化所金属氮碳氧还原催化剂的研究进展

徐明俊1,2,刘杰1,2,葛君杰1*,刘长鹏1*,邢巍1*

(1.中国科学院长春应用化学研究所,先进化学电源实验室,电分析化学国家重点实验室; 2.中国科学技术大学应用化学与工程学院)

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第1张

摘要:氧还原反应(ORR)是燃料电池的核心,开发高性能催化剂一直是燃料电池技术面临的严峻挑战. 近年来,热解M-N-C催化剂的发展和以金属有机骨架材料为前驱体的运用让非贵金属氧还原催化剂的性能大幅度提升,但催化活性位点、反应机理等方面仍不甚清晰,需要分子水平上进一步的研究. 在这里,作者总结了本课题组近些年来在氧还原方向上的研究成果,首先是对催化剂活性位点进行的相关探索,提出了新的活性位点结构,为开发新型催化剂提供了帮助,并对金属氮碳催化剂进行了细致的微观调控,探讨了最佳的合成方法;其次开发了高效的双原子Co2N5催化剂,并在理论计算的指导下合成出了更为高效的FeCo双原子催化剂,具备了替代铂基催化剂的性能;最后针对芬顿反应引发的稳定性问题而开发的低芬顿反应活性的单原子Cr和单原子Ru催化剂,表现出了较高的活性和稳定性,为解决催化剂实际应用问题开辟了新的研究思路与方向.作者相信,通过对催化剂活性位点的不断认知和对新型催化剂的不断开发,终会让非贵金属催化的商业化应用成为现实.

关键词:氧还原反应;金属氮碳催化剂;活性位点.

随着化石燃料的大规模使用,在推动社会发展的同时,也产生了大量的NOx,SOx,CO2废气,带来了前所未有的环境危机.作为全世界最大的能源大国,我国也面临着巨大的能源挑战,开发新型高效清洁能源已经迫在眉睫.目前,包括燃料电池在内的新能源技术已被《国家中长期科学和技术发展规划纲要》明确列为国家重点发展的前沿科技,是不可或缺的国家战略研究方向.

燃料电池是一种不需经过直接燃烧,将燃料(氢气,甲醇,甲酸)中的化学能直接通过电化学过程转化为电能的高效能量转化体系.其具有发电效率高,比能量高,噪音范围低,燃料范围广,真正实现零排放等优点,是新型清洁能源的研究热门.目前,质子交换膜燃料电池(PEMFC)已经初步实现商业化,作为汽车和公共汽车的主要动力源,有着广阔的发展前景.

对于一个氢氧燃料电池其电极反应如下所示:

阳极 2H2 - 4e-→ 4H+

阴极 O2 + 4H+ + 4e- → 2H2O

总反应 2H2 + O2 → 2H2O

研究发现,相较于阳极发生的氢氧化(HOR)反应,阴极上发生的氧还原(ORR)反应由于其缓慢的动力学过程导致更高的过电势(300-600 mV之间),严重降低了燃料电池的实际总体效率.因此,需要开发高效且稳定的催化剂以降低反应能垒,加快反应速率,提高能量转化效率.氧还原反应是一个包含多个电子转移步骤的复杂反应,反应机理涉及多个基元反应和多种中间体,由Wroblowa提出的氧还原模型是目前公认的基础模型(图1a),其认为氧还原过程存在两种路径,一种是4电子直接生成水的直接路径,一种是2电子生成H2O2,再2电子生成水的2+2间接路径.理想的氧还原反应应是O2直接生成H2O的直接途径,没有中间产物H2O2的产生,因为H2O2会导致催化剂降解和电极材料腐蚀的问题.在实际过程中通常发生的是2电子和4电子的混合反应路径,因此需要开发4电子反应高选择性的催化剂.

研究者发现,活性中心对含氧中间体具有适当吸附能是实现氧还原高效催化的关键.通过DFT计算,将ORR活性对氧结合能ΔEO作图得到一条火山曲线(图1b),发现Pt位于其顶部.Pt材料的催化剂是目前催化活性最高,稳定性最好的催化剂,但其昂贵的价格和较高的载量使其难以大规模的商业化使用.此外Pt基催化剂还面临着纳米颗粒的聚集,甲醇中毒和浸出严重等问题.虽然目前对于低Pt的催化剂研究已经有了一定进展,但仍达不到大规模商业化的标准.因此,迫切需要开发低成本,高活性的非贵金属稳定催化剂.热解金属-氮-碳催化剂(M-N-C M=Co,Fe)被认为是最有希望的候选催化剂.最早是在1964年发现钴酞菁在碱性溶液中具有可观的氧还原活性,后来发现经过热处理可以大大提高其在酸性溶液中的活性和耐久度.早期的M-N-C催化剂采用炭黑为前体直接合成,缺乏对形貌和结构的精确控制,难以对其活性位点进行细致分析,后来人们将金属有机骨架材料(Mental Organic Framework,MOF)作为前体改善形态和传质问题,得到了性能更高的M-N-C催化剂.目前,应用于氧还原催化剂前驱体最广泛的MOF材料是沸石咪唑酯骨架结构材料ZIF-8(Zeolitic Imidazolate Frameworks),通过高温热解蒸发其Zn金属中心可以获得多孔结构,2-甲基咪唑配体富含N且不含O,可以使N在C骨架中均匀分布,大量存在的微孔结构可以容纳更多的活性位点,介孔有利于传质,并且具有优秀的电导率和一定的稳定性.基于以上的优点,作者课题组以ZIF-8为前体合成出了一系列的氧还原催化剂,首先对活性位点进行了探索,对其结构实现了微观调控,进一步合成出了高性能的双原子催化剂,还开发了低芬顿反应的稳定催化剂.

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第2张

图1 (a)Wroblowa提出的氧还原模型,(b)氧还原反应的火山曲线图.

1 M-N-C活性位点的探索

开发高效低成本的氧还原催化剂对燃料电池商业化有着重要意义,M-N-C催化剂被认为是最有前途的候选品,进一步的改进需要分子水平上的精确控制,因此,需要全面了解活性位点和氧还原机理.对此,作者课题组经历了长期的探索,对活性位点有了进一步的认识.

2012年 wen团队合成了以铁碳纳米棒为核心,石墨碳为壳的富氮核壳结构催化剂,并认为碳包覆的金属为其催化活性位点.2015年,Zitolo团队以ZIF-8为前体在氨气和氩气中热解得到了原子分散的Fe-N-C催化剂,通过穆斯堡尔谱中(Mössbauer spectroscopy)观察到D1和D2两种不同的配位情况,结合同步辐射的拟合结果和理论计算,认为含有一个或两个轴向氧的FeN4C12结构为活性位点.

基于以上对活性位点的早期认识,作者课题组于2018年以微孔金属-有机框架限制策略,合成了单原子分散的Fe-N-C催化剂,起始电位为0.92V与Pt/C相当,优于大部分非贵金属催化剂,随后进行了细致的光谱分析,对其活性位点有了进一步的深刻认识.首先在穆斯保尔谱图中发现了D1,D2两种配位环境的铁,之前文献中普遍认为是中低自旋的Fe2+N4结构.经过拓展X射线精细结构(Extended x-ray absorption fine structure,EXAFS)分析拟合得出Fe-N配位数为4,Fe-O配位数为1,认为其活性位点是5配位的Ox-Fe-N4结构.随后进行近边X射线吸收精细结构(X-ray absorption near edge structure,XANES)分析,发现其Fe主要以+3价的形式存在,将D2归因于高自旋Ox-Fe3+-N4作为主要的活性位点.进一步进行原位的同步辐射分析(图2a,b,c),发现随着电势增加Fe K-edge XANES曲线发生正向位移,表明Fe(2+/3+)氧化还原转变.经过密度泛函理论计算(DFT)和数据拟合,认为活性位点发生了一个动态的随着电势变化的氧化还原过程,根据等式Ox-Fe3+-N4+e-↔HO-Fe2+-N4,在高于Fe(2+/3+)氧化还原电势时,Fe2+被氧化成Fe3+,再随着电势下降被还原回Fe2+,并发现OH-Fe2+-N4的结构可以降低活化势垒促进反应进行,提高氧还原催化效率,认为真正的活性位点是具有轴向键合氧原子的FeN4C8(图2d).

通过上述研究,加深了对活性位点和反应机理的认识,这对作者设计和计算新的活性位点提供了帮助.

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第3张

图2 (a)原位XANES,(b)伴随的一阶导数图,(c)在0.3-0.9 V的条件下,在室温下在O2/N2饱和的0.1 M HClO4中的同一电极上收集的Fe-NC-950的Δμ-XANES,(d)使用结构模型(Fe-N4-C8)通过FEF9计算获得的理论Δμ-XANES.

2 M-N-C结构的微观调控

除了对活性位点的探究,作者课题组还细致的研究了金属氮碳催化剂的形成过程,通过改进金属源和热解气氛,实现了对催化剂形态结构的微观调控.

作者研究了不同类型的Fe源(Fe(acac)3,FeCl3,Fe(NO3)3)的添加量对Fe-N-C催化剂微观形态,结构,性能和活性部位的影响.发现FeCl3,Fe(NO3)3的加入虽然会提升前体的石墨化程度,但是会产生Fe3C的纳米颗粒,影响催化剂的性能,而Fe(acac)3可以更好的保证铁在前驱体中的原子级分散,在Fe的含量为1.47 wt%时获得了最佳的催化性能,远低于FeCl3的3.18wt%和Fe(NO3)3的3.50wt% ,是更为高效的铁源.通过分析认为这与Fe(acac)3的分子大小和水解程度有关,合适的分子大小和较低的水解程度有利于其在ZIF-8前体中的分散,以得到更高的催化活性.

通过调节ZIF-8的热解气氛,可以有效的调节微孔介孔大孔在催化剂材料当中的分布,并通过材料以研究不同孔结构对催化剂形貌,结构和性能等多方面的影响.由此作者开发了表面氢刻蚀法,通过调整热解时的氢浓度,可以有效地调节所得催化剂的孔径分布和活性位点密度.这个方法在保持催化剂传质的同时增加活性位点密度,是提升催化剂性能的新思路.作者发现在10%的H2浓度下热解的催化剂具有最好的ORR性能,在热解过程中,ZIF-8的结构会被重排,H和O元素的挥发会导致碳骨架的收缩,产生的气体会在碳骨架中形成利于气体传质的扩散通道.如果氢气浓度继续增加,H2会刻蚀不稳定的C物质,进而破坏催化剂原本的微观结构,导致比表面积减小,催化剂性能减弱.

本节中,作者课题组探究了不同金属源和不同热解气氛对活性位点的形成和催化活性的影响,总结了最佳的金属源比例和气氛含量,分析其在活性位点形成过程中的发挥的作用,开发了氢气刻蚀法来调控催化剂的孔结构,实现了对金属氮碳催化剂的微观调控,加深了对金属氮碳催化剂材料的理解,并可以合理地指导高性能催化剂的开发.

3高活性M-N-C双原子催化剂的开发

基于对催化剂结构和活性位点的深刻认识,作者课题组理性设计并成功合成了新型的双核活性位点结构Co2NxCy,使用双金属有机骨架(ZnCo-ZIF)限制了前驱体中Co的空间分布,从而实现了对最终热解催化剂的Co原子分散状态的控制.通过像差校正扫描透射电子显微镜(STEM)发现Co-Co距离为2.1-2.2Å的两个原子位点,以及通过X射线吸收光谱法发现新的缩短的Co-Co间距(2.12Å)(图3a-d),作者首次确定了热解催化剂中的双核Co2NX位点.进行密度泛函理论(DFT)计算,进一步确认该结构为含有轴向OH的Co2N5(图3e).计算表明,对于传统的单原子位点来说,氧分子更倾向于侧向或末端吸附在单个原子位点上,而在双原子位点上,O2倾向于桥顺式吸附在双原子金属上,由于弱化的O-O键相对容易的断裂,桥顺式吸附对四电子ORR途径是有利的,并有更好的氧还原活性.通过旋转环盘电极(RRDE)测试发现,Co2N5具有非常高的质量活性,是传统CoN4位点的12倍,在酸性电解质中显示出前所未有的催化活性,其半波电位为0.79 V,是目前发表的最好的Co-N-C催化剂. 除此以外,相应的电子转移数也揭示了其四电子路径,H2O2的产生也受到了抑制,在扫描电位内低至2%,远低于Pt/C,揭示了其较好的稳定性.作者的发现为开发ORR非贵金属催化剂开辟了新的方向.

通过对双核金属催化剂的发现和对活性位点的认识,作者课题组还从理论指导实践,成功合成出了高效的FeCo双原子催化剂,并从进一步的分析印证了作者计算的结果.首先,发现Fe的氧化还原电势Eredox越正,对含氧中间体吸附能力越弱,ORR性能越好.通过了一系列的理论计算,发现FeCoN5的结构在0V时能对水中OH自发进行吸附,在高电势下吸附更强,形成稳定的FeCoN5-OH结构,其中心原子的电荷密度低于FeN4,更难以失去电子,使其具有更高的Eredox,从而实现更好的催化效率.并从形成能的角度发现其能量更低,更易自发形成.基于以上的计算,作者通过构造Fe-Co双原子催化位点实现定制电子结构和优化几何构型的策略,OH在较宽电势窗范围内牢固地锚定在以双原子为中心的FeCoN5位点上,从而实现了Fe的最佳能级轨道和理想的O-O桥吸附的良好几何构型.通过同步辐射鉴定了Fe-Co双原子中心结构活性位点的形成,与之前DFT计算拟合结果相同,实现了从理论指导实践的过程. 在进一步的电催化性能测试中(图4a-f),FeCoN5-OH位点表现出的质量活性是单核FeN4位点的20倍,具有前所未有的ORR活性.在酸性溶液中起始电位为1.02 V,半波电位高达0.86 V,并进一步分析提出了该位点的氧还原机理.

在本节中,作者课题组首次发现了Co2N5的双核结构,其质量活性是单核位点的12倍,并对其活性位点进行了细致的分析.再通过DFT计算与实践相结合,量身定制了电子和几何结构,开发了更高效的双核FeCoN5-OH催化剂.作者相信,通过对活性位点和反应机理的认识和理论计算相结合,可以开发出具有更高ORR活性催化剂,从而使取代基于Pt的催化剂真正可行.

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第4张

图3 (a)Co K边缘XANES,(b)傅立叶变换(FT)EXAFS,(c)小波变换的k2加权χ(k)Co K边缘EXAFS,(d)比较FEFF计算的k2加权EXAFS路径的q空间大小,(e)Co2N5/C的结构示意图,Co(紫色),N(蓝色)和C(灰色).

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第5张

图4 (a)在0.1 M HClO4溶液中以1600 rpm扫描合成催化剂的ORR极化曲线,扫描速率为5 mV·s-1; (b)这些催化剂的塔菲尔斜率,(c)这些催化剂的电流密度比较,(d)用RRDE方法计算的FeCoNx/C的H2O2产率和电子转移数,(e)稳定性试验前后的ORR极化曲线,(f)用FeCoNx/C和Pt/C阴极催化剂制成的膜电极组件的极化曲线和相应的功率密度.

4 稳定M-N-C催化剂的开发

虽然Fe-N-C催化剂拥有目前最高的非贵金属氧还原活性,但其因芬顿反应所带来的稳定性问题难以解决.具体来说,Fe能与H2O2发生芬顿反应产生活性氧(ROS),这种强氧化性的氧自由基会导致催化剂的降解和碳基底的腐蚀,使反应活性严重降低.为此,作者课题组开发了低芬顿反应的单原子Ru和单原子Cr催化剂,进一步分析了其活性位点和反应机理.

大环的Cr酞菁由于与氧的结合能过强,被认为没有氧还原活性.作者课题组通过使用金属有机骨架ZIF-8作为锚定基质,将Cr引入到了前驱体中,首次获得了用于ORR的热解Cr -N -C 单原子催化剂.通过扩展x射线精细结构谱(EXAFS)和方波转换(WT)分析,确认其中原子分散的Cr具有平面CrN4配位结构. 在酸性介质中,催化剂表现出出色的ORR活性,最佳半波电位为0.773 V. 极低的塔菲尔斜率(37 mV·dec−1)表明其氧还原反应是一个2+2电子过程,即便产生了H2O2(图5c,d),也显示出了极好的稳定性,在加速老化测试(ADT)下,经过20000圈半波电位仅有15 mV的负移(图5a),显著低于Fe-N-C的31 mV(图5b),进一步验证了其芬顿反应的低活性.CrN4活性位点的发现为解决非贵金属ORR催化剂的稳定性问题提供了新的可能性.

作者还利用主客体策略以ZIF-8为前体合成了一种新型的Ru单原子催化剂,通过计算得出其对含氧中间体具有适当的吸附自由能,展现出较高的活性,并具有较低的芬顿反应活性,以保持长期稳定性.通过同步辐射拟合结果,发现其活性位点为含有轴向O的RuN4结构(图6a,b),轴向上的O和平面的N原子可以减少中心Ru的电荷密度(图6c),以减小对含氧中间体的吸附,获得更高的氧还原活性.经过旋转环盘电极测试,发现在酸性介质中具有0.92 V的起始电位和0.824 V的半波电位,显著高于Ru的纳米颗粒.此外,单原子Ru催化剂表现出极大的芬顿反应抑制性,在20 000次循环后半波电位只有17 mV的负移.在实际燃料电池装置中的出色活性和稳定性进一步证实了Ru单原子催化剂的实际应用能力.

本节中,作者课题组通过开发全新的Cr和Ru单原子催化剂,从稳定性上实现了对Fe-N-C催化剂的超越,为催化剂在燃料电池中的实际应用提供了新的可能.

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第6张

图5 (a)Cr/N/C-950和(b)Fe/N/C-950的极化曲线在开始和加速降解测试20000次后的比较,(c)上图:ROS与ABTS之间的反应;下图:照片显示芬顿反应后溶液的颜色变化,(d)0.1 M HClO4溶液的紫外可见吸收光谱.

长春应化所:金属氮碳氧还原催化剂的研究进展,图片,金属氮碳氧还原,金属催化,X射线,紫色,氧还原,燃料电池,第7张

图6 (a)Ru K边缘(b)k3加权的Ru K-edge 傅立叶变换EXAFS光谱,(c)Ru-SSC的EXAFS拟合曲线,(d)Ru箔和Ru-SSC的k3加权小波变换 K边缘EXAFS信号,(e)Ru-SSC,Ru/NC和NC的UPS光谱.

5 总结与展望

面对日益趋近的环境能源危机,发展高效清洁的燃料电池已迫在眉睫,Pt基催化剂由于其成本和稳定性因素不能大规模商业化使用,因此需要开发高效的非贵金属催化剂,幸运的是,热解大环化合物的发现为其提供了可能,并且通过ZIF为前体可以定向改善催化剂的形态结构,但进一步的探索仍需要对活性位点的深刻认识和理论计算的帮助.本文中,作者总结了作者课题组近些年的工作,首先,作者对M-N-C催化剂的活性位点进行了深层次的探索,通过分析原位光谱信息对活性位点有了进一步的认识,并提出了新的活性位点结构.探究了不同金属源和热解气氛对催化剂结构活性的影响,实现了对金属氮碳催化剂的微观调控;其次,作者开发了具有更高氧还原活性的双核金属催化剂Co2N5,发现其质量活性远高于对应的单核催化剂,并进一步分析了其结构和反应机理,还通过理论计算指导了FeCoN5-OH催化剂的合成,并从结构分析中印证了理论计算的结果,成功实现了从理论到实际的突破;最后,为了解决芬顿反应所带来的稳定性问题,作者还合成了新的Cr单原子和Ru单原子催化剂,发现了其极低的芬顿反应活性,为燃料电池的实际应用提供了一种新的可能.

对于未来的氧还原催化剂发展,作者认为首先应进一步推进对真实活性位点的探索,通过新型的表征技术和计算技术实现对活性位点的理论建模,从而预测和指导新的催化剂合成;为了将其能够用于实际应用,还可以通过改善Fe的配位环境来抑制Fe基催化剂的芬顿反应活性,调节催化剂粒径与提高催化剂载量开发更高效的低芬顿反应催化剂,早日替代Pt而实现燃料电池的大规模商业化.